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-" This is a survey of the basic properties of strong mixing conditions

-~

for sequences of random variables. The focus will be on the ¥structural"

properties of these conditions, and not at all on limit theory. For a

discussion of central limit theorems and related results under these con-

-

{ \ f i
ditions, the reader is referred to Peligrad [60] or Iosifescu [50]. This

~

survey will be divided into eight sections\r?s follows:
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Measures of dependence

Five strong mixing conditions;

Mixing conditions for two or more sequences
Mixing conditions for Markov chains;

Mixing conditions for Gaussian sequences,

J

The behavior of the dependence coefficients{) Lo -

Some other special examples

Approximation of mixing sequences by other random sequences
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1. MEASURES OF DEPENDENCE

Suppose (Q,F,P) is a probability space. For any two o-fields Aand BeF

define the following measures of dependence:

0 a(A,B): = sup |P(A n B) - P(A)P(B)|, AcA, BeB. . (1.1) _
ol $(A,B): =sup |P(B|A) - P(B)|, AeA, BeB, P(A) >0. (1.2)
‘-\. ¢rev(A,B): = ¢(B,A) ("rev'" stands for "reversed"). (1.3) :
=Y . = sup IP(ANB) - P(A)P(B)| :
Y(A,B): = sup PIAYP(B) , AeA, BeB, (1.4) -

. p(A,B): = sup|Corr(X,Y)}, X ¢ L,(A), YeL,(8); X,Y real. (1.5) !

e R S ;
{E B(A,B): = sup %Xi=lzj=1|P(AinBj) - P(Ai)P(Bj)l. (1.6) |
0 ;

where this latter sup is taken over all pairs of partitions {Al""’ AI} and i

{Bl’”" BJ} of 9 such that A eA for all i and Bj €B for all j. In (1.4)

and in the sequel, 0/0 is interpreted to be 0. These measures of dependence

will be the basis for the mixing conditions that we shall study, starting

with Section 2. Here in Section 1 we shall just study these measures of

dependence.

The following inequalities hold:

s 2a(A,B) < B(A,B) < ¢(A,B) s %Y(A,B). (1.7)

W - - . s

o 4a(A,B) < p(A,B) s ¥(A,B). (1.8)

5 P(A,B) < 20%(A,B) % (A,B). (1.9)

: P(A,B) = supll E(F|B) - Ef|,/|I£]l,, £eL,(A), f real. (1.10) 1
‘ a(A,B) s %, B(A,B) s 1, ¢(A,B) s 1, p(A,B) s 1. (1.11) 3

Eqn. (1.9), an improvement of the earlier well ‘known inequality

p(A,B) < 2¢;’(A,B), comes from Peligrad [59, p. 462, eqn. (4)]; independently

the kindred inequality p(A,B) < 2-max{¢(A,B), ¢rev(A,B)} was given by Denker

and Keller [34, p. 516, line -8]. In this last inequality as well as in

............
------------
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ij (1.7), (1.8), and (1.9), equality is achieved in some simple cases such as 3
N when A = B = {Q,A,AS,¢} where P(A) = %. Eqns. (1.7), (1.8), (1.10), and ¥
j: (1.11) are all either trivial or at least fairly easy to prove. Referring .

to eqn. (1.11), Y(A,B) can of course take on the value +o., Each of the

measures of dependence in eqns. (1.1)-(1.6) takes the value 0 precisely

- when A and B are independent o-fields.
b~
~: The measures of dependence in eqns. (1.1)-(1.6) fit nicely into a more .
, general framework using '"norms' of the bilinear form "covariance'. For
f. any o-field A, let S(A) denote the set of all complex-valued simple A- .
:E measurable random variables. (The particularly nice form of eqn. (1.13) ;
! below depenis on the use of complex-valued rather than just real-valued 4
,fﬁ random variables; however, this is not of any special importance.) Define i:
~° is.
o the following families of measures of dependence between pairs of o-fields -
A and B: ‘!
o >
< For 0sr,s<1, 2
- t-
-, [V
.~ - 3
a. s(A,B): = sup JP(AnB)r PLA)E(B”, AcA, BeB. '
. ’ [P TT[P(B)] L
: :
N For 1 <p,q <, gt
- \
’ )
¥ Ry o(AB): = sup EXY - EXEY] X eS(A), YeS(B).
2 ’ Nyl
" P q :
- ~
; (Note that ar,s *,*) is a variant of Rl/r,l/s("') using only indicator N
’ functions.) Obviously the measures of dependence in eqns. (1.1)-(1.5) are et
3 ; S
2 respectively aO,O(A’B)’ al,O(A’B)’ ao’l(A,B), al,l(A’B)’ and RZ,Z(A’B)' :‘
3 (The equation p(A,B) = R, ,(A,B) holds by [75, Theorem 1.1] and a simple N
-3 , \
.! calculation.) Also it is easy to show that if one modifies the definition
.:: :~
e -
-, "
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of R_ _(A,B) in an appropriate way so as to allow the r.v.'s X and Y to
take their values in the Banach spaces £1 andf?’respectively, then one
obtains a measure of dependence that is within a positive constant factor
of B(A,B) in eqn. (1.6) (see [22, Section 2.2}).

If OSro, T1s Sg» slsl, 0<0<1, r: = (1—6)r0 + 6r1, and

s: = (1 -e)s0 + 651, then for any two o-fields A and B,

o, AB) s o, A, SI(A,B)]G, (1.12)
t ’ 0 ’

0 1

1-6 )
Ry/r,17sA:B) = [Rllro,l/so(A’B“ °[R1/r1,1/sl(A’B)] . (1.13)

Eqn. (1.12) has a trivial one-line proof and is useful for comparing the
various measures of dependence ar,s (see [21, Theorems 3.1, 3.2, and

4.1 (i)(ii)]). Eqn. (1.13) is an application of Thorin's multilinear version
of the Riesz-Thorin interpolation theorem (see e.g. [5, p. 18, Exercise 13]);
eqn. (1.13) and variants of it are useful for comparing various measures of
dependence and for studying the relations between them (see [67, Chapter 7]
{56, Lemma 1] [21] [22]). For example, as a consequence of (1.13) one can

show that if 1sp,q,t<~ and 1/p + 1/q + 1/t = 1, then for any two o-fields
A and B,

R, QA8 s (2m) « oA, B) 1t (0(A,B) 1P - [o__ (4,B)11/0

rev

(see [21, Theorem 1.1(i)]J). Except for a constant factor, this inequality
covers some other previously known ones as special cases, including eqn.
(1.9). 1In an obvious way, a ''small' upper bound on Rp,q(A,B) might lead to
a '"small" value of Cov(X,Y) if, say, X and Y are r.v.'s which are A-measura-

ble and B-measurable respectively. Such bounds are often useful in the

proofs of limit theorems for dependent random variables.

-y

v b e am e




T 4
2N
s
ALY
-}_:-: Further information about measures of dependence can be gained from
. ' the use of other methods and results in interpolation theory, such as the
-.:;:: techniques in the Marcinkiewicz interpolation theorem and the Stein-Weiss
T -
-;::2 [72] methods for handling indicator functions. That observation is due to
A
W. Bryc. For example, using such techniques Bryc proved that if
e
(e 1<p,q<® and 1/p + 1/q = 1, then for any two o-fields A and B,
A,B) < C - A,B) «[1 -1 A,B 1.1
Rp,qWo®) = Ceyyp,1/quB) + 1 - Tog oy /g (ALB)] (1-14
‘:“_.j: where C is a positive constant that depends only on p and q (see [21,
:": Theorem 4.1(vi)]). (For the case p = q = 2, (1.14) improved a similar but
much weaker inequality established in {15] by different methods; see also
:-I‘_'-::‘_: [24].) For any choice of p and q meeting the given specifications, (1.14)
\--
T
A is within a constant factor of being sharp (see [22, Section 1.1]).
o Let us say that two measures of dependence are '"equivalent' if each
:::EI one becomes arbitrarily small as the other one becomes sufficiently small.
o
e Among the measures of dependence o g 0<r,s<1, and Rp qQ’ 1<p,qse,
) > ’
o there are only five equivalence classes which consist of more than one
member:
i < < 1;
Ty (1) ar,s’ T +s <1, Rp’q, 1/p + 1/q < 1;
N . < < - .
(ii) ar,l-r’ 0<rc<l, Rp,p" l < p <o (where p' is defined by
o 1/p + 1/p' = 1);
» (111) o) 5 Ry o
..'_,-."j ) ’ ’
o V) %10 Ry
f, ) %y 10 Rl 1 (which are equal by a simple argument).
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These five classes each contain one of the measures of dependence in eqns.

l“
| AR

4

. (1.1)-(1.5). The measure B in (1.6) is not equivalent to any of the mea-

.
PO

sures a  _ or Rp q All of this is explained in [21, Remark 4.1] and

- [22, Sections 1.2 and 2.2].
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2. FIVE STRONG MIXING CONDITIONS

Henceforth all random variables are real-valued. For any family
(YS, s € S) of random variables (where S is an index set), the notation
O(YS, s €S) will mean the o-field generated by this family, i.e. the f
smallest o-field containing the events {Ys <r}, seS, reR.

Suppose (Xk’ k €Z) is a sequence of random variables. (No assumption
of stationarity is made yet.) For -»<J<L <o define FB: = o(Xk, J<k<l).

Referring to eqns. (1.1)-(1.6), for each n=1,2,3,... define
J 00

a(n): = supy a(F_, FJ+n)’ A
o(n): = sup, J0(F, Fr, ),
p): = sup, JW(FL, Fr ),
p(n): = supJezp(Ffw, Fj+n)’
B(n): = supJezB(Ffw, Fj+n).

The sequence (Xk) is said to be
strongly mixing [66] if limn+ma(n) =0,
¢-mixing [46] if limn+m¢(n) =0,
y-mixing ([8] essentially) if limnaww(n) =0, ]
p-mixing [52] if ;imnﬁwp(n) =0,
absolutely regular {[73] if limn*mB(n) = 0.
These are the five conditions on which we shall focus. The Y-mixing condition

actually evolved from the '"«-mixing" condition, which wa. the condition studied

J+n

J+n) = 0, The maximal correlation coefficient

. . J
in [8]: 11mn*msupr(F_m, F
p(A,B) was studied in [44] [39], much earlier than the p-mixing condition.
The absolute regularity condition was attributed in [73] to Kolmogorov.

Several minor comments are in order: ﬂ




B b S

(i) In defining the strong mixing condition (a(n) +0) for a "singly-

infinite'" sequence (Xk, k=1,2,3,...) one modifies the definition of a(n)
J o

X as follows: a(n): = supJZIOz(Fl, FJ+n)' -_‘_'.:
(ii) In defining the strong mixing condition for a strictly stationary _J
i doubly-infinite sequence (xk, k €Z) one can simply define a(n) by ..-'j

- a(n): = cx(F(_)m, F:).

« (iii) In whatever context one is dealing with, the sequence of numbers
o(l), a(2), o(3),... is obviously automatically non-increasing.

(iv) If a given random sequence (Xk, k €Z) is strongly mixing, and for

N each keZ, fk: R~ R is a Borel-measurable function, then the random sequence
i (fk(Xk), k €Z) is also obviously strongly mixing, with the dependence coef-

ficients a(n), n=1,2,... for the sequence (fk (Xk)) being no greater than
the corresponding ones for (Xk) .
(v) If a strictly stationary strongly mixing singly-infinite sequence ,.‘-
‘ (Xl’ Xz, XS,...) is extended to a strictly stationary doubly-infinite

sequence (Xk, k €Z), then this new doubly-infinite sequence is also strongly

& By

mixing, with precisely the same dependence coefficients a(n), n=1,2,....

~\: (vi) Comments (i)-(v) carry over verbatim to the other mixing conditions
i}‘_ defined above (¢-mixing, y-mixing, p-mixing, and absolute regularity) and t
‘ their dependence coefficients. .“
By eqns. (1.7), (1.8), (1.9), and (1.11) the following implications hold
for a given random sequence: E
" (i) p-mixang = strong mixing.
(ii) absolute regularity = strong mixing. -
:: (iii) ¢-mixing = p-mixing and absolute regularity. i
: (iv) y-mixing = ¢-mixing.
; :

TR RO S PR
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Among these five mixing conditions there are (aside from transitivity) no
" other general implications. (For special families of random sequences, .
3 however, e.g. Gaussian sequences, discrete Markov chains, etc., there are ~;
j other implications; this will be seen in more detail in Sections 4 and S ;“
later on.) Since "strong mixing' is the weakest of these five conditions, - _
‘ these conditions -- and others that imply strong mixing -- are sometimes
:E referred to collectively as "strong mixing conditions" (plural). The term
' "strong mixing condition' (singular) will refer to the condition a(n) »+0 '«".I-
- as above. Of course all of these mixing conditions are satisfied by se- ~:
‘: quences of independent r.v.'s and also by m-dependent sequences. Other ‘“
\i examples will be encountered in Sections 4, 5, 6, and 7 later on. Later in =
Section 2 here the strong mixing condition will be compared to standard
conditions in ergodic theory. . \-
For a given sequence (Xk, k €Z) the ¢-mixing condition is not neces- '
. sarily preserved if the direction of 'time" is reversed. Referring to eqn.
‘ (1.3), define for each n=1,2,3,..., 4) (n) = suPJeZ¢rev( Jw, F;m) = 1
1 SupJezcb(Fo;m, F‘Lo). In [S1, p. 414] there is an example of a strictly 7
stationary countable-state Markov chain (Xk, k €Z) such that ¢(n) +0 as "
\ n—+o and ¢rev(n) = 1 for all n21. "Symmetric" versions of the ¢-mixing :E:
._ condition, putting equal emphasis on ¢(n) and ¢rev(n), have been useful in .
: limit theory (see [34] [59]). :
In the rest of Section 2, and also in most of therest of this paper, .)-
we shall deal only with a strictly stationary doubly-infinite sequence
) (X, keZ). \
: For measure-theoretic convenience, for the rest of Section 2 we shall :jf
3 assume that our probability space is (RZ,BZ,P). (In a context such as .
:

J'I. J‘\v"

..--- "'A\.A‘r

:.'Q{. fosndl

¥l ;‘,- /‘-(\r'«‘x'.:,\‘ -.- ‘ ‘. * _...-.'-_--_*--_“- -7. \ \ -.v.‘.‘.-
S ‘(\..-\.x' '\‘ ‘n o
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this, the symbol B is intended to mean the standard Borel o-field.) We ::.;Z:.:
shall of course assume that for each we Rz and each keZ, Xk(w): = Wy '
(The notation w, means the kth coordinate of w.) We shall use a regular 1:1::::
c.:;.
conditional distribution of (X,, X,, X.,...) given (X, X _, X .,...). oo
1’ *2° 3 0’ -1 "-2 s
In this context a standard measure-theoretic argument will show that, :
under our assumption that (Xk) is strictly stationary, for each n21,
0 o
¢(n) = ess sup[sup|P(BIF_ ) - P(B)|, BeF I,
and
0 00
B(n) = E[sup|P(B|F_) - P(B)|, BeF ].
There is another useful formulation of B(n). Let Q denote the probability L I
RSN
Z BZ . . 0 00 . N
measure on (R™,B") such that (i) under Q the o-fields F__ and Fl are inde-
pendent and (ii) on each of these two o-fields F(_)m and F°1° the measure Q is :Z':j:;
identical to P. Then (under our assumption of strict stationarity), : g
B(n) = sup|P() - QD)|, DeFO VF> 2]
(2.1) 2
=l -l i
1By
: s 0 .
where P (resp. Q) is the restriction of P (resp. Q) to F__vF and Il 3'§
denotes total variation. _.'.:'
Vs
Let T denote the usual shift operator on Rz; that is, for each we Rz, Py
N

Tw is defined by (Tm)k: = 0 for all keZ. For any event Ae F:o (= Bz)

I
Ty Ty Ry

b'g
AR '

sy
. - s . &,

we use the notation TA: = {w: T 1meA}. Our (strictly stationary) sequence L'C_':-
(xk) is said to be "mixing", or "mixing in the ergodic-theoretic sense", if ’
- Py \’:.
for all A,BeF__, lim  P(AnT'B) = P(A)*P(B). (In ergodic theory this S
u'W._
condition is sometimes referred to as ''strong mixing", but we shall use the N
term '"strong mixing" for the condition a(n) +0 as before.) Our sequence “
(Xk) is said to be ''regular" if its past tail o-field nEIF:: is trivial __.‘
o

RS

[

BT R e R S TP S Py :-,,:-._.'- -
. ” v

--------
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o

8 8
; :
.‘: N
s (i.e. contains only events of probability 0 or 1). It is well known that g
{: (i) mixing (in the ergodic-theoretic sense) = ergodic, i
é; (ii) regular = mixing (in the ergodic-theoretic sense), and f
i} (iii) strong mixing (a(n) +0) = regular. :‘
. Statements (ii) and (iii) are easy consequences of [47, p. 302, Theorem i i
i 17.1.1]. Naturally, in (ii) and (iii) one can replace 'regular'" by the E
: condition that the future tail o-field nEIF: be trivial. (In Example 6.2 3;
X in Section 6 we shall encounter a well known stationary regular sequence (:
? whose future tail o-field fails to be trivial.) E
? If (xk) is strictly stationary and absolutely regular, then its double 3
tﬁ tail o-field nEI(F:: v F:5 is trivial (i.e. P(D) = 0 or 1 for every D in 3
-i the double tail o-field). This holds by (2.1) and an elementary measure- ;
ﬁ theoretic argument (one can use e.g. [74, Lemma 4.3]). In [19] a strictly T
stationary p-mixing sequence is constructed for which the double tail . ,?
o-field fails to be trivial. “
Let us briefly give references for several other related mixing con- fi
& ditions, for strictly stationary sequences. The '"information regularity" E‘
;E ' condition (see [65]) is like the strong mixing conditions defined above, x
f{ using the "coefficient of information' as the basic measure of dependence. .
-i A '"Cesaro" variant of strong mixing, known as '"uniform ergodicity", was
? studied by Cogburn [25]; and Rosenblatt {68, Theorem 2] established a
‘, nice connection between this condition and the strong mixing condition )
: itself. Another mixing condition weaker than strong mixing has played a .
i nice role in extreme value theory (see e.g. [54]) as well as in convergence E
:: in distribution to non-normal stable laws (see [29]). A mixing condition ?
% based on characteristic functions was studied in [75]. Finally, by a g
3 theorem of Ornstein, a condition of weak dependence known as the 'very §
5 2
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weak Bernoulli'" condition characterizes the strictly stationary finite-state
sequences that are isomorphic to a Bernoulli shift. For more information on
the very weak Bernoulli condition, including recent generalizations of it to
stationary real sequences in connection with central limit theory, see [71]

[36] [32] [17] and the references therein.
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3. MIXING CONDITIONS FOR TWO OR MORE SEQUENCES

Suppose (xk, k €Z) and (Yk, k €Z) are strongly mixing sequences that
are independent of each other. Then the sequence of random vectors .
((Xk,Yk), keZ) is strongly mixing. Hence the sequence of sums (Xk-+Yk, keZl)
is also strongly mixing. The same comments apply to the other mixing condi-
tions being discussed here. Pinsker |65, p. 73] noted this for absolute
regularity. Under natural extra restrictions, such comments can be extended
from two to countably many sequences that are independent of each other.
Here we shall just present the basic propositions from which all of these
comments can easily be deduced.

The first result is due to Csaki and Fischer [27, p. 40, Theorem 6.2]:

Theorem 3,1 (Csaki and Fischer): Suppose An and Bn’ n=1,2,3,,.. are o-fields

and the o-fields (An\/Bn), n=1,2,3,... are independent. Then

00

o( ‘S A, ;/Bn) = sup_, 0(A,B).

For a short proof see Witsenhausen [76, Theorem 1]. In Example 4.4 in the
next section an interesting application of Theorem 3.1 will be given. For

the other dependence coefficients, slightly weaker statements hold:

Theorem 3.2: If the hypothesis of Theorem 3.1 is satisfied, then the -

following statements hold:

(i) a( VA, vB) < Ya(A,B).
n=1 =1 n=1 non

(11) BC VA, VB) s |
n=1 n= =

B(A_,B).
1 n=1 L




13
o o0 pot

| (iii) ¢(vA, vB)s Jo(A,B).
v n=1 n=1 n=1

N _ w w

N, (v) wvA, vB) s (f[1+v@A . BOD - 1.

. n=1 n=1 n=1
8

. Statements (i)-(iii) can be found in [12, Lemma 8], [20, Lemma 2.2], and

b"‘
-:3. [11, Lemma 2,2]. Statements (ii)-(iii) can also be derived easily from
- [37, Lemma 1]. Statement (iv) is an elementary consequence of [14, Lemma 1].
.
k2
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R 4. MIXING CONDITIONS FOR MARKOV CHAINS
- F:
L Here a brief discussion is given of Markov chains satisfying strong "
- mixing conditions. For a more thorough discussion of this topic see Rosen- :2
' blatt [67, Chapter 7]. ) ,
‘; The following theorem is fundamental to the study of mixing conditions -
- on Markov chains: N
A
f: Theorem 4.1. Suppose (Xk, k €Z) is a strictly stationary real Markov chain. ib
N Then for all n21 the following five statements hold: tﬁ
i (1) a(n) = a(o(X,), a(X )). 3;
> .o =Y
; (i1) p(m) = p(a(Xy), o(X )). -3
- _c
[ (iii) B(n) = B(o(X;), o(X )). 7
(iv) ¢(m) = #(o(X)), o(X ). 3
v, 3
.. - ]
e. (V) ¥ = w(eXy), olX ). 5
Ll \e
. IS
(St
The proof is an elementary measure-theoretic exercise using the Markov property. X
. LY
N For example, see [8, Lemma 8] for a proof of (v). (Thus for Markov chains, 3

¥
r ¥r

P -mixing is equivalent to the "+-mixing" condition studied in [8]). As a

“‘T.

consequence of (iv), for Markov chains the ¢-mixing condition is equivalent

v

v
s

& ~
y to Doeblin's condition (see [67, p. 212, eqn. (18)]). o
! =
& For the next theorem we shall use the following terminology: A sequence ;
i
‘? of non-negative numbers ays 85, 8g,..e is said to "converge to 0 exponentially -
‘f fast" if there exists a positive number r such that a = O(e'rn) as n - «, o
N ~Y
! Theorem 4.2, Suppose (Xk’ k €Z) is a strictly stationary real Markov chain. gt
.. - h‘
3 Then the following three statements hold: 5
. I
- r
:. g
i )

;L.
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(i) If p(n) »0, then p(n) +0 exponentially fast.

(ii) 1If ¢(n) >0, then ¢(n) >0 exponentially fast.

(iii) If P(n) »0, then Pp{(n) +0 exponentially fast.
Part (iii) was proved in [8, pp. 8-9, Theorem 5]. The arguments for parts

b:’
:
(i) and (ii) are similar. (For part (i) a simple argument using (1.10) §(
and the Markov property will show the well known inequality p(m+n) < p(m)ep(n) F
for all positive integers m and n. For part (ii) see e.g. [67, p. 209, Lemma .
3].) Theorem 4.2 does not extend to either a(n) or B(n). As a consequence
of the classic convergence theorem for transition probabilities, any strictly
stationary countable-state irreducible aperiodic Markov chain is absolutely J
regular. Such Markov chains exist for which the rate of convergence of a(n)
(and hence also the rate for 8(n)) to 0 is slower than exponential (see e.g. f
[30, Examples 1 and 2] or {51, p. 414, Corollary 1]). (By Theorem 4.2 such

Markov chains cannot be p-mixing.) Of course every stationary fimite-state

irreducible aperiodic Markov chain is y-mixing (with exponential mixing rate).

22

A strictly stationary real Markov chain (Xk) is said to be a "Harris

-4

chain" if it has the Harris recurrence property: There exists a regular ver- E
sion of the conditional distribution of (Xl, XZ’ XS"") given X0 such that E.
for every xe¢ R, for every Borel subset Bc R such that P(XO e B) >0, one has .
that P()(n e B for infinitely many positive integers nlxo =x) =1, (Thus every
stationary countable-state irreducible Markov chain is a stationary Harris g'
chain . Also, non- stationary Harris chains will not be discussed here.) =
It is well known that every stationary Harris chain has a well defined '"period" Ei
pe{1,2,3,...} (the chain is said to be "aperiodic" if p=1). This fact and §
the next theorem can be seen (with a little work) from Orey |57, p. 13, _?
Theorem 3.1; p. 23, Theorem 5.1; and p. 25, lines 9-13]. :f
ot

:

A R R R R R
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ﬁS& Theorem 4.3. (i) Every strictly stationary real aperiodic Harris chain is -
:.: absolutely regular. (ii) More generally, for any strictly stationary real
iﬁ Harris chain, lim oo B(n) =1 - 1/p where p is the period.
.SZ

: A sequence (Xk) is said to be an "instantaneous function" of a real
|5£ Markov chain (Yk) if there is a Borel-measurable function f: R R such

that for each keZ , Xk = f(Yk). As a consequence of Theorem 4.3(i), any
instantaneous function of a stationary real aperiodic Harris chain is a

.Ei; stationary absolutely regular sequence. In |4] there are some stationary ¢-
Eé mixing sequences which cannot be represented (on any probability space) as
iE' an instantaneous function of a stationary real Harris chain (periodic or
EE; aperiodic). It is apparently unknown whether any such sequences exist which
;&. are Y-mixing or even 1-dependent. .
e
_g Example 4.4. Rosenblatt [67, p. 214, line -3 to p. 215, line 13] presents a
,55 class of stationary real Markov chains which are p-mixing but not absolutely
 } regular. (Consequently, they are not Harris chains.) His construction is
lii based on "random rotations'. Here we shall construct one of those examples
téi in a different way, as an application of Theorem 3.1.
uf? As a preliminary step, consider a stationary Markov chain (Wk, keZ)
é; with two states {0,1}, with invariant probability vector (%,%), and with
Ef one-step transition probability matrix (pij) given by Poo = P13 =34,
',_ P10 = Pp1 =}. By an induction argument, for each n21 the n-step transition

o probability matrix (p( )) is given by p(n) p{?) = (1 +2My2,
:::ﬁ-' pﬁ;) p(gll‘) = (1 - 27™/2. A simple argument will show that for each n21,

- ..h._-.-.-,-,-.-.-_-.,m M &L R R AR T TSI T T T T
. AR \'u HCA TR EREE S CR L YA IR SN LA RO AT I WO RS RV SR ST NSO LRSI AN, IR T M UV TR
; .{“\'\k *-.‘"‘h *.4" F.",,l"’A " A.._}\ !l.l‘.. .'».... .—’. o -.".. ..\ .-‘.-‘~ N “a \.‘,‘,. T e et (2 < S
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_-:;f (W) satisfies p(n) = p(o(Wy), c(K )) = |Corr(W,,W )| = 2", Here the first

.‘ inequality comes from Theorem 4.1 and the second from the elementary fact

\ that every function of a two-state r.v. is automatically an affine function.

3‘ Now let (Wlsj), keZ), j=1,2,3,... be independent Markov chains, each

i having the same distribution as the Markov chain (W,, k eZ) above. Define

the sequence (Xk, k €Z) by Xk: = z‘;’ﬂz'jw]gj). Up to null sets, for each Kk,

o(X) = o(WIEj), j=1,2,...) (i.e. from X, one can calculate the value of
W‘Ej), j=1,2,3,... a.s.). It follows that the sequence (Xk) is a Markov

‘h chain, and it is easy to see that it is strictly stationary. Further, (Xk)

satisfies p(n) = 2 "for all n21, by Theorem 3.1 and the properties of (W)

‘ above; and hence (Xk) is p-mixing. In the framework of eqn. (2.1) one has

: that for each n21, by a simple calculation and the strong law of large

numbers, P(limJ_mZ';ﬂWéj)Wr(‘j) = (142 ™) =1 and

Q(limJ_mZ‘j]___lwéj)wr(lj) = 1) =1, and hence P and Q are mutually singular on

G(XO,Xn). Hence (X,) satisfies B(n) = 1 for all n21, i.e. (X)) fails to

be absolutely regular. This completes Example 4.4.

t2

l.‘ "
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5. MIXING CONDITIONS FOR GAUSSIAN SEQUENCES

For stationary real Gaussian sequences, a thorough discussion of the
various mixing conditions is given by Ibragimov and Rozanov (48] [49,
Chapters 4-5]. Theorem 5.1 here essentially just lists a few basic results

from that discussion.

Theorem 5.1: Suppose (Xk, k €Z) is a (non-degenerate) stationary real
Gaussian sequence. Then the following four statements hold:
(1) The following two conditions are equivalent:
(a) (Xk) is regular.
(b) (Xk) has an absolutely continuous spectral distribution function, and
its spectral density f (defined on [-mw,w]) satisfies ff“log:f(k)dx > -,
{(2) The following three conditions are equivalent:
(a) (Xk) is strongly mixing.
(b) (Xk) is p-mixing.
(¢) The spectral density f of (Xk) can be expressed in the form
f(A) = |P(eix)|2exp[u(eik) + ;(eix)] where P is a polynomial, u and v are
continuous real functions on the unit circle (in the complex plane), and v
is the conjugate function of v.
(3) The following two conditions are equivalent:
(a) (Xk) is absolutely regular.
(b) The spectral density f of (Xk) can be expressed in the form

f(\) = IP(eIA)|2exp[2?;_majelJA] (the sum converging in L,[-m,7]) where P
is a polynomial whose roots (if there are any) lie on the unit circle and

, 2
5, lillal? <=
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